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The leading end of an infinitely long gas bubble which displaces a viscous surfactant 
solution in a capillary tube is studied. The surfactant is present at elevated 
concentration and has sorption controlled mass transfer. The displaced fluid wets the 
wall, forming a continuous liquid film between the bubble and the capillary wall. Both 
the thickness of this film and the additional pressure required to aspirate the bubble 
depend upon the Marangoni stresses caused by non-uniform surfactant adsorption 
along the interface. The equations governing this flow are solved at asymptotically 
small capillary number for the case where the balances of momentum and mass transfer 
are coupled to leading order. As the Marangoni effect is increased over several orders 
of magnitude, the additional pressure and the wetting-layer thickness increase above 
the stress-free interface values found by Bretherton (1961) and approach an upper 
bound of 4'13 times the Bretherton values. Accompanying changes in the surface 
tension, Marangoni stress and surface velocity profiles as this upper bound is 
approached are described. Finally, surface viscosities that are intrinsic to the interfacial 
region are incorporated in the analysis. When small departures from surface 
equilibrium states are considered, the terms representing surface viscous effects have 
the same functional form as the Marangoni stresses and result in thicker films and 
higher additional pressures. 

1. Introduction 
The motion of a long gas bubble which displaces a viscous liquid in a capillary tube 

has been studied extensively to understand the flow of immiscible fluids in porous 
media. It is well established that the presence of surface-active agents may affect the 
hydrodynamics of such flows considerably. In many situations of practical interest, 
surfactants are present at elevated concentrations (e.g. foam mobility control in 
tertiary oil recovery, and in the human micro-circulation when gas bubbles appear) and 
experimental results differ significantly from predictions based on clean surface 
conditions. When the displaced fluid wets the wall, there is a continuous liquid film 
between the bubble and the tube wall. The two quantities of interest that can be 
measured and computed are the film thickness h', and the additional pressure drop Ap' 
created by the presence of the bubble. We propose here an asymptotic study of these 
quantities in the case where the surfactant mass transfer is adsorption-desorption 
controlled. 

A thorough review of the previous work on this flow is given in both the recent 
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articles of Ratulowski & Chang (1990) and of Stebe, Lin & Maldarelli (1991). 
Therefore, we recapitulate the literature only briefly here. 

In the case in which no surfactant is present, Bretherton (1961) studied the motion 
of a long gas slug moving in a liquid-filled capillary tube. Then, at low Reynolds 
number, and in the absence of gravitational effects, the flow depends solely on the 
capillary number Ca, a ratio of viscous to surface tension forces 

Ca = p‘U‘ /d ,  

where p’ is the viscosity of the displaced phase, U’ is the velocity at which the gas 
bubble is drawn through the tube and c’ is the interfacial tension of the gas-liquid 
interface. 

For asymptotically small Cu, the gas slug can be divided into five regions (figure 1). 
At either end of the bubble are hemispherical regions, where capillary forces alone 
determine the interfacial shape and pressure. The hemispheres are joined via transition 
regions at either end of the bubble to the long cylindrical region. Bretherton established 
analytically that the thickness of the uniform wetting layer in the cylindrical region, h;, 
is determined by the leading end of the bubble, and that the additional pressure drop 
does not depend on the bubble length. Both quantities are proportional to Ca2I3, and 
are found to have the values: 

h;/R’ = 1.34 Ca2I3, Ap‘R’/d = 9.40 Ca2I3, 

where R‘ is the tube radius. The Bretherton analysis has been extended to Hele-Shaw 
cells, and expanded in its range of validity by Park & Homsy (1984). 

Many experiments have been performed in an effort to confirm these analytical clean 
interface results. In all of the ‘surfactant free’ studies (in which trace surface active 
contaminants were probably present) wetting-layer thicknesses in excess of those 
predicted by this asymptotic analysis are systematically reported (see e.g. Bretherton 
1961 ; Chen 1985; Schwartz, Princen & Kiss 1986). Furthermore, these discrepancies 
worsen with decreasing capillary number, counter to expectations for a small Ca 
analysis. 

Additional pressure drop measurements across a gas slug have also been found to 
be consistently in excess of those predicted by Bretherton’s theory, and to depend upon 
the bubble dimensions. Specifically, in the case of a gas slug being drawn through a 
capillary filled with an electrolytic solution, Marchessault & Mason (1960) report a 
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pressure drop that is proportional to slug length for moderately long bubbles. While 
the authors did not add surfactant to their solution, it is likely that surface active 
impurities were present. Similar behaviour has been observed when surfactant is 
deliberately present. For example, when sodium dodecyl sulphate (SDS) is added to 
saline at elevated concentrations, Barthbs-Biesel, Moulai-Mostefa & Meister (1 986) 
find a pressure which first increases with bubble length and then asymptotes to some 
constant value significantly in excess of the clean surface theory of Bretherton. 
Additional experimental evidence of elevated pressure drops in the presence of 
surfactant adsorption is provided by Hirasaki & Lawson (1986), who added sodium 
dodecyl benzene sulphonate to water, as well as by Ginley & Radke (1989) who 
measured the pressure needed to displace gas bubbles in capillaries filled with solutions 
of SDS in a mixture of glycerol and water. These experimental studies establish that 
surfactant adsorption can create stresses which resist the motion of long gas slugs in 
capillaries. As a result of these stresses, higher driving pressures are required to aspirate 
the long gas slugs, and thicker wetting layers are formed than those predicted for clean 
surface conditions. 

As explained by Levich (1962), surfactant molecules adsorb along fluid interfaces, 
where they lower the interfacial tension. Convection tends to increase (decrease) the 
surface concentration of adsorbed surfactant near stagnation zones where the flow 
converges (diverges). However, both adsorptive-desorptive and bulk diffusive fluxes 
tend to diminish gradients in surface concentration. If either of these fluxes is slow, a 
non-uniform distribution of adsorbed surfactant is established, causing a gradient in 
the interfacial tension, and thus a Marangoni stress. This stress, exerted by the 
interface on the fluid, is directed from regions of lower surface tension toward regions 
of higher tension. 

In a bubble fixed reference frame, the capillary wall moves with velocity - U',  and 
the fluid far from the bubble is in Poiseuille flow with a positive centreline velocity. 
Consequently, there is a stagnation ring at either end of the bubble, as well as a 
stagnation point at either pole. Therefore, as shown in figure 2, surfactant accumulation 
with a concomitant decrease in surface tension is expected at the leading pole, while 
surfactant depletion with an accompanying elevation in surface tension is anticipated 
at the leading stagnation ring. 

Several theoretical studies have been undertaken to understand the effect of 
surfactants in capillary slug flows. Thus far, all of these studies involve perturbations 
from either clean interface or equilibrium states for a long bubble moving at 
asymptotically small Ca. For infinitely long bubbles in these asymptotic regimes, both 
Herbolzheimer (1987) and Chang & Ratulowski (1987) show that the surfactant effect 
reaches a maximum. In this limit, the equations of mass transfer and fluid mechanics 
are decoupled in the transition region. The values of both the leading-end additional 
pressure and wetting-layer thickness for this maximum effect are simply 42/3 times the 
Bretherton expressions. This limit bounds the data for ostensibly clean flows appearing 
in the literature. In addition, at elevated surfactant concentrations, the maximum 
surfactant effect bounds the pressure data to which long bubbles asymptote in the 
study of Barthes-Biesel et al. 

Recently, the influence of trace adsorption of bulk insoluble surfactants on the 
motion of long drops or bubbles has been studied by Park (1991) and by Borhan & 
Mao (1992). In this regime the surfactant distribution is determined by the competition 
between surface convective and surface diffusive fluxes. Park integrated the equations 
for the dip-coating of a plate, which are the same as those that govern the front end 
of an infinitely long bubble. Uniform wetting-layer thicknesses in excess of the 
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FIGURE 2. The surfactant distribution at the leading edge of the bubble is shown. Surface convection 
tends to accumulate surfactant at the leading stagnation pole, and to deplete the surface concentration 
near the leading stagnation ring. The cylindrical polar coordinate system ( r ,  z )  is also shown. 

Bretherton value are found, which are bounded above by the maximum surfactant 
effect value. The effects of insoluble surfactant on droplets of finite length at low Ca 
have been investigated by Borhan & Mao who use the boundary integral technique to 
integrate Stokes’ equations for a viscosity ratio of 1 .O and for lengths of up to five times 
the tube radius. For these moderately long drops the pressure required to aspirate the 
flow increases as the surface diffusion rate decreases. 

The distribution of bulk soluble surfactant depends strongly on the transport of 
surface active molecules from the bulk phase to the interface. There are two main 
transport processes : transport from the bulk to the fluid sublayer by bulk diffusion and 
convection, followed by exchange between the sublayer and the interface by adsorption 
and desorption. 

When only trace contaminants are present (as in the apparently clean systems) bulk 
mass transfer is important, and the surface concentration of adsorbed surfactant is 
small. The leading end of an infinitely long bubble has been studied extensively in this 
limit by Ratulowski & Chang who derive the equations for various convective, 
diffusive and sorptive kinetic timescales. They integrate a convection-equilibrium 
model, in which convection determines the bulk surfactant concentration profile. The 
kinetics of adsorption and desorption are assumed to be instantaneous, so that local 
equilibrium between the interface and the sublayer is maintained. They also integrate 
a diffusive-adsorption model, where both bulk diffusion and adsorptive-desorptive 
exchange determine the surfactant distribution. For both models, the pressure and 
wetting-layer thickness are bounded below by the Bretherton clean surface limit and 
approach the maximum surfactant effect as the surface elasticity (a measure of the 
dependence of surface tension on surfactant adsorption) becomes large. The effects of 
diffusion controlled mass transfer on a long bubble of finite length has been studied by 
Park (1992) who finds that the presence of a stagnated region causes pressure drops 
that depend upon bubble length. 

The other situation of interest is encountered when the bulk concentration is high 
enough to neglect bulk diffusion, and the rate of adsorptive-desorptive exchange 
governs the flux of surfactant to the interface. In this regime, the surface concentration 
deviates only slightly from the value corresponding to thermodynamic equilibrium 
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with the bulk. Hirasaki & Lawson derived the governing equations of a gas slug for the 
case where the Marangoni effect is coupled with the hydrodynamics to leading order. 
Rather than integrating these equations, they require that the film thickness remain 
constant throughout the transition region, and determine h’, empirically. Barthes- 
Biesel et al. integrate these film equations in the vicinity of the back stagnation ring, 
and find an elevated additional pressure drop that depends on bubble length in a 
fashion qualitatively similar to the experimental data. Finally, Ginley & Radke derive 
and solve the equations for the leading end of the bubble for the case in which the 
sorption kinetics and fluid mechanics are weakly coupled, so that, to leading order, the 
flow is governed by Bretherton’s equations. In the limit of fast adsorption-desorption 
kinetics, they find a positive first-order correction to the Bretherton pressure. Their film 
thickness, however, decreases to first order. This is unexpected, since all of the wetting- 
layer thickness measurements reported in the literature are larger than those reported 
by Bretherton. 

In conclusion, Marangoni effects on the flow of long gas slugs are well understood 
in the case of trace surfactant adsorption. Such is not the case for surfactants present 
at elevated bulk concentration. The objective of this paper is to consider the case where 
the surfactant flux is adsorption-desorption controlled and the equations of 
momentum and mass transfer are coupled to leading order. The effects on this flow of 
surface viscosities are also discussed. 

A dimensional analysis of the equations of mass and momentum transfer is 
presented in the next section, along with a thorough discussion of the dimensionless 
groups that appear in the literature. In $3,  following Bretherton, the equations are 
rescaled appropriately for the different regions and the ordering of the dimensionless 
groups for which this analysis is valid is specified. In $4, the equations and matching 
conditions governing the film thickness and the pressure drop in the sorption 
controlled limit are derived and their numerical integration is described. Finally, the 
results of the integration and matching are discussed in $5. 

2. Governing equations 
An infinitely long, inviscid gas bubble is drawn slowly with velocity U‘ through a 

capillary tube of radius R’ filled with an incompressible Newtonian fluid of viscosity 
p’. The flow geometry is shown in figure 2 in the bubble fixed reference frame. As the 
bubble advances, a thin wetting layer of constant thickness h: is established in the 
cylindrical region, far behind the leading edge of the bubble. The gas phase pressure 
remains uniform at some reference pressure, arbitrarily taken here to be zero. 

A surfactant is dissolved in the liquid phase. In the absence of flow, the surfactant 
has a bulk concentration C&, to which corresponds a surface concentration I‘i, and an 
interfacial tension c&. 

All dimensional quantities are denoted with a prime, while dimensionless quantities 
are unprimed. Throughout the literature, the following scales are adopted to put the 
governing equations into dimensionless form: R’ for lengths, U‘ for velocities, and 
p’U‘/R’ for viscous stresses. However, for the surfactant related quantities, different 
scales have been used, depending upon whether small departures from equilibrium or 
a clean surface state are considered. Since this study focuses on elevated surfactant 
concentrations, perturbations from an equilibrium surfactant distribution are 
considered, and surface concentration, surface tension and bulk concentration are 
scaled with their equilibrium values, I‘&, g:, and C;,, respectively. For this choice of 
characteristic surface tension, pressure scales as ai,/R. 
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2.1. Hydrodynamics 
The capillary radius is assumed to be small enough that gravity can be neglected and 
the flow is axisymmetric. The system is described using a cylindrical polar coordinate 
system ( r ,  z )  as shown in figure 2 with the origin located at the leading pole, and the 
z-axis pointing into the viscous phase. 

Assuming that the Reynolds number for this flow, 

Re = p'u' R'/,u'', 

is small, the steady state flow field of the viscous fluid is governed by Stokes' equations : 

CaV'u = Vp, 

v * u  = 0, 

where u is the velocity field and p is the hydrodynamic pressure in the liquid phase. The 
capillary number, Ca : 

Ca = ,u'U'/uLQ, 

is based on the equilibrium surface tension. 
Far ahead of the bubble, the liquid is in Poiseuille flow: 

The no-slip condition at the capillary wall requires: 

u = -6, at r = 1, (2.4) 

where 6, is the unit coordinate vector in the ith direction. Boundary conditions on the 
velocity and pressure field are imposed along the interface, the position of which is an 
unknown, defined by : 

r = H(z), 

with unit tangent and normal vectors t and n (directed into the viscous phase). The 
surface gradient operator, V, is defined as: 

V, = (/-nn).V, 

where / is the identity tensor and nn is a dyadic product. 
The kinematic condition at the interface is: 

n - u  = 0 at r = H(z). (2.5) 

The normal stress jump across the interface is assumed to be balanced by a Laplace 
pressure term : 

where z is the deviatoric stress. In this balance, surface viscosities have been neglected. 
However, their effect is discussed in the concluding section of this article. 

Finally, the tangential stress balance requires that the shearing by the viscous fluid 
be balanced by the Marangoni stress. 

Cat.7.n = -t.V,u at r = H(z). (2.7a) 

Since the surface tension n is a function of the surface concentration I', the tangential 
stress balance can be written : 

Cat-z-n  = E t - V , r  at r = H(z). (2.7 b) 

-p+Can.z-n = (V, .n)a  at Y = H(z), (2.6) 
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The elasticity number, E :  

is a measure of the ratio of Marangoni stresses to interfacial tension in the system. 
Because of the Marangoni stress, the distribution of surfactant along the interface must 
be determined in order to complete the problem formulation. 

2.2. Surfactant mass transfer 
The most general mass transfer equations are stated here. They will be used below 
to find the relevant scalings of the dimensionless groups for the sorption-controlled 
limit. 

At equilibrium, the distribution of surfactant between the interface and the bulk 
is governed by an adsorption isotherm, in which the adsorptive flux of surfactant 
P(C, r )  is balanced by the desorptive flux Q(C, I): 

P ( C = l , r =  l > = Q ( C = l , r = l ) .  (2.8) 

Under these conditions, the surface tension is at equilibrium. These fluxes are made 

The concentration in the bulk liquid C(r, z )  is governed by a balance of convection 

(2.9a) 

dimensionless by the quantity T‘e/q.a&/(R’p’). 

and diffusion : 

or, isolating the velocity dependence in the capillary number, 

Pe u.  V C  = V’C, 

Ca Au-  V C  = V’C. 

Pe = U’R’/D’, 
The bulk Peclet number Pe: 

(2.9b) 

gives the relative rates of convective to diffusive mass transfer in the bulk system. In 
this expression, D’ is the bulk surfactant diffusivity. This group can be written as a 
product of Ca A ,  where A is: 

gLq R’ 
D’p’ ’ 

A = -  

The bulk concentration obeys a no-flux condition at the tube wall: 

ac 
- = 0  ar at r = l ;  (2.10) 

and tends to a uniform value both far ahead of the bubble and in the long, cylindrical 
region : 

lim C(r, z )  = 1 ,  
Z-t  m 

lim C(r,z) = Cfilm. 
2--m 

(2.11) 

(2.12) 

The surface concentration is determined by the balance of surface diffusion, surface 
convection and the mass flux S from the fluid sublayer: 

(2.13) 
1 

CuVS.(Tu,)--Vv,2T= S at r = H(z), 
4 
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where u, is the surface velocity, defined by: 

The group A,  is: 
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u, = ( / -nn) .u .  

where 0: is the surface diffusivity. As for the bulk phase, A,  can be related to a surface 
PCclet number. The flux S is determined by two processes that occur in series : diffusion 
of surfactant to the sublayer, followed by adsorption onto the interface: 

( 2 . 1 4 ~ )  
1 

hA 
S = - - n . V C  at r = H(z), 

and S = P(C, 0- Q(C, r )  at r = H(z). (2.14b) 

where the dimensionless adsorption depth h : 

r,l, 
C,lq R’ ’ 

is a measure of the distance beneath the interface that is depleted by surfactant 
adsorption. As this depth approaches zero (for example, when the bulk concentration 
of surfactant is high) S becomes decoupled from the bulk diffusive flux. 

At equilibrium, S is zero, the bulk concentration is uniform, and the rates of 
adsorption and desorption balance as required by the adsorption isotherm (2.8). 
Expanding S in a Taylor series about the equilibrium state and retaining first-order 
terms, the balance becomes: 

(2 .14~)  

where K, is the bulk adsorption number: 

a measure of the dependence of the net sorptive flux on bulk concentration gradients. 
Similarly, K,, the surface adsorption number : 

is a measure of the dependence of the net sorptive flux on surface concentration 
gradients. The groups K,  and K, are a measure of the characteristic rate of 
adsorptiveaesorptive exchange. For example, the ratio of K,lCa is the ratio of 
characteristic sorptive flux caused by a surface concentration gradient to the surface 
convective flux in the system. These groups are not independent, but are implicitly 
related by the adsorption isotherm (2.8). 
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Finally, in the thin film region of the bubble, the surface concentration must tend to 
some uniform value in equilibrium with the bulk concentration there: 

lim T(z )  = TfiLm. 
z+--oo 

(2.15) 

These are the complete governing equations. 

2.3. Dimensionless groups in related studies 
The scales used in this article were chosen so that velocity is isolated in Ca, with the 
remaining dimensionless groups containing only parameters that characterize the 
physical chemistry and geometry of the system. 

Some of the dimensionless groups differ from those adopted in the study of 
Ratulowski & Chang. Throughout their analysis, the clean interface value for the 
surface tension is used instead of the equilibrium value. Furthermore, they chose to 
scale bulk concentration with C,, a characteristic bulk concentration, and surface 
concentration with R'C;. Because of this choice of scalings, their adsorption depth h 
is implicitly unity. 

The elasticity number based on clean surface values appears in the Ratulowski & 
Chang (1990) analysis as a Marangoni number. We prefer to call this group the 
elasticity number, reserving the term Marangoni number for its more traditional 
definition as the ratio of E/Ca, which is a measure of Marangoni to viscous stresses in 
the system. 

Finally, in their study, the adsorption isotherm (2.8) is linearized in the limit of small 
adsorption. This expression is used to define the Stanton number, St,  as a measure of 
sorption kinetic barriers. In terms of quantities defined in our study, the Stanton 
number is: 

which is a measure of the rate of surfactant adsorption relative to surface convection 
for small departures from a clean interface state. The product StCa is an adsorption 
number for small departures from clean interface conditions, analogous to the bulk or 
surface adsorption numbers defined above. 

3. Determination of the magnitude of the dimensionless parameters 
Both bulk surfactant mass transfer and surface diffusion are assumed to be negligible 

in this analysis, an assumption that is valid only for certain ranges of the mass transfer 
and interface related dimensionless groups. 

This study emphasizes the role of adsorptive-desorptive mass transfer in the case 
where the mass transfer and flow field are strongly coupled. Therefore, the elasticity 
number E and the sorption kinetic parameters Kc and K, are leading order, i.e. 

E = O( l), 

Kc = O(1), 
K, = O( 1). 

For the situation where the bulk concentration is uniform, only E and K, play a role 
in determining the behaviour of the system. Since experimental evidence indicates that 
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4-m u = - 4  <- - - -  
FIGURE 3. The rescaled coordinates for the transition region include p, which measures the distance 
from the tube wall toward the tube centre, Q which measures the axial location in the transition 
region. The origin of the axial coordinate is shifted a distance - 1 from the origin of the hemispherical 
cap. The position of the interface is given by p = h ( 0 .  

D’ and Di are of the same order of magnitude (see, for example, the review by Agrawal 
& Neuman 1988) A and A, are assumed to have the same order in this analysis. Their 
magnitude, and those of the remaining dimensionless groups can be identified by 
considering the mass transfer equations for each region of the flow field. This requires 
that the scalings of the equations in each of the regions be understood. 

3.1. Scalings and regions 
Equations (2.1F(2.7) accurately describe the behaviour of the hemispherical cap 
region. In the transition region, however, the interface must bend from a nearly 
cylindrical geometry to a nearly spherical shape. This requires that viscous tractions 
must be retained in the equations of motion, and that the governing equations be 
rescaled. 

The proper transition region scalings have been derived in detail by Bretherton and 
by Park & Homsy and are used here without proof. The rescaled coordinates, shown 
in figure 3, include p, a stretched distance from the tube wall, and <, a stretched axial 
coordinate, which measures the distance from the origin of the transition region. This 
origin is shifted a distance 1 from the leading pole of the bubble, which is determined 
as part of the solution. In this coordinate system, the thickness of the liquid film is 
denoted by h ( 0 .  The transverse velocity vP must also be stretched in order that the 
equation of continuity be satisfied. The rescaled variables are : 

Neither the axial velocity v5 nor the pressure need be rescaled. In terms of these 
variables, the equations of motion reduce to the lubrication equations to leading order. 
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These scales require that the perturbation expansion of any unknown X ,  must occur 

(3 * 5 )  
in powers of Call3: 

X = C Canla X(n,. 

3.2. Hemispherical cap region 
The unknowns in (2.1)-(2.7) are expanded according to (3.5). It follows from (2.1) that 
the pressure and velocity are then decoupled up to O(Ca). The tangential stress balance 
(2.7 b) requires that the lowest-order perturbation in the surface concentration must be 
O(Ca) in order that the tangential stresses remain bounded. Because the elasticity 
number E is O(1), the surface tension also departs from its equilibrium at O(Ca). 
Therefore, as in the Bretherton study, the normal stress balance (2.6) reduces to the 
Laplace-Young equation : 

-p = (V;n)+O(Ca) at r = H(z). (3.6) 
The integration of (3.6) shows the interface location in this region to be a hemispherical 
cap of radius i p :  

H(z) = - (1 - [ipz + 1l2); + O(Ca). 

Together (3.7) and (2.1) require that any changes in pressure from the static pressure 
before order O(Ca) must be caused by effects of the flow field on the curvature of the 
interface. 

The tangential stress balance (2.7) does not simplify to the Bretherton clean interface 
balance. Rather, the Marangoni stress term balances the viscous shearing to leading 
order. This does not complicate the analysis since, according to (3.7) the flow field does 
not influence the leading-order pressure and interfacial shape. 

3.3. Mass transfer in the hemispherical cap region 
The mass transfer equations for this region (2.8)-(2.15) reduce to the sorption 
controlled limit only when the dimensionless groups obey certain upper bounds. The 
bulk mass balance (2.9b) requires that A (and therefore A,) be O(CU-”~) in order that 
bulk convective flux be neglected. The normal diffusive flux to the interface is zero to 
leading order if the product hA is O ( C U ~ / ~ )  according to (2.14~). Finally, since the 
surface Laplacian of the surface concentration is O(Ca), and A,  is O(CU-’/~), the 
surface diffusivity term in (2.13) is negligible. Adopting these scales, the leading-order 
bulk concentration in the hemispherical cap is uniform and the mass transfer in this 
region is adsorption-desorption controlled. 

3.4. Transition region equations 
Adopting the rescaled variables given in (3.1)-(3.4), the equations of motion for the 
transition region reduce to the lubrication equations, and the tangential stress balance 
is : 

(3.8) C a 2 I 3 A  = E-+O(Ca) at p = h ( 9 .  

In order that the viscous shearing on the interface remain bounded, (3.8) requires that 
the surface concentration in the transition region depart from its equilibrium value at 
O(Ca2/3). The surface tension also departs from equilibrium at this order, and the 
normal stress balance becomes : 

(3.7) 
2 

P 

av  ar 
aP ac 

-p = 1 +- (1 +O(Ca2/l”)> at p = h(C). i (3.9) 
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3.5. Mass transfer in the transition region 

As in 93.3 the mass transfer equations are used to specify the upper bounds on the 
dimensionless groups. In terms of the rescaled variables, the bulk mass balance (2.9 b) 
becomes : 

(3.10) 

The flux condition at the interface (2.14~) becomes: 

= Ca213hA[Kc(1-C)+Kr(1-r)] at p = h(c). (3.11) 
ac ah aC 
aP ac ac 
- + ca213 - - 

Similarly, equating (2.13) and the diffusive flux (2.14a), the interfacial mass flux can be 
written : 

According to (3.10) the bulk convective flux can be neglected for A of O(Ca-l) 
(thereby also specifying A,).  The diffusive flux (3.11) to the interface is negligible if the 
group hA is of O ( C U ~ / ~ ) .  For these scales, the surface diffusive flux in (3.12) is negligible 
and the bulk concentration remains uniform throughout both the transition and 
cylindrical film regions. The mass transfer is therefore sorption controlled, and is 
governed by the simplified mass balance : 

at P = h(0 .  (3.13) 

3.6. Cylindrical region 
In the cylindrical region the film thickness, velocity and concentration fields have 
uniform values. When bulk diffusion is negligible, the concentration remains uniform 
in all three regions, and the limiting values for the transition region variables are 
simply : 

lim r= 1, 
<+-m 

lim u, = -1, 
<+;-00 

lim h = h,. 
<+-a 

(3.14) 

(3.15) 

(3.16) 

3.7. Ordering of the diflusion-related dimensionless groups 

In order to neglect bulk phase mass transfer for the entire system, the stronger 
restrictions on the bulk diffusive flux flow must be adopted. For A and A,, these are 
the restrictions imposed by the hemispherical region; 

A = A ,  = o(ca-2/31. 

For the adsorption depth A, these scales, combined with the transition region 
restriction on the product hA require that: 

h = O(Ca). 
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Adopting these scalings, the flux of surfactant in the system is sorption controlled and 
the bulk concentration is unity everywhere. 

Expanding each of the unknowns according to ( 3 3 ,  the asymptotic equations that 
govern each region are developed and discussed in the next section. 

4. Asymptotic expansions 
4.1. Hemispherical cap region 

As discussed in 93.2, the concentration, surface tension and pressure fields are 
determined up to O(Ca) in this region. According to (3.7) the pressure to O(Ca2I3) is 
determined by the interfacial shape, which is found by matching the hemispherical cap 
to the transition region. The matching between the two regions is described in 94.4. 

4.2. Transition region 
To leading order the transition region is governed by the lubrication equations: 

subject to the integral mass balance: 
h(O)(O 

q ( 0 )  dP = -Am. lo 
The three boundary conditions at the interface p = h,o)(Q are: 

the tangential stress balance : 

the normal stress balance : 

and the kinematic condition at the interface: 

at P = h(0). (4.5) 

The surface velocity in the transition region is defined by: 

%(O) = U,(O) at P = 40). (4.6) 

v,= -6, at p = 0. (4.7) 

Along the wall, the no-slip condition requires : 

Finally, the surface mass balance completes the problem formulation in this region : 

Integrating (4.1) subject to (4.2), (4.4) and (4.7), the equation governing the local film 
thickness h,,,($ can be determined : 
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is found from equations (4.1)-(4.4) and (4.7) and (4.8) to 

(4.10) 

The film equation (4.9) is identical to that obtained by Ratulowski & Chang. 
However, these authors find a surface velocity different from (4.10) in their bulk 
equilibrium model. Since the mass transfer regimes for the two studies differ, so do the 
tangential stress conditions that are used to derive the surface velocity equation. 
However, (4.9) and (4.10) are essentially the same as those originally derived by 
Hirasaki 8z Lawson. 

Marangoni stresses alter the flow field through the term containing the group E/K,. 
Furthermore (4.9) and (4.10) tend to the appropriate limits as the magnitude of E/K,  
is varied. When E/K,  is O(CU'/~),  the mass transfer and tangential stresses are 
decoupled to leading order. This can be caused by either of two mechanisms : either the 
interface is insensitive to surfactant adsorption ( E  of O(CU'/~) ,  K, of O(l)), or the rate 
of surfactant adsorptive-desorptive exchange is infinitely fast ( E  of O( l), K, of 
O(CU-'/~)) so that the surface remains unperturbed from its equilibrium. For either of 
these cases, the interface behaves to leading order as it would in the absence of 
surfactant, and the clean interface equations of Bretherton are recovered where the 
surface tension is replaced by its equilibrium value gig. 

The opposite extreme, E/K,  of O(CU-'/~) can be approached either because of a 
strong dependence of surface tension on surfactant adsorption ( E  of O(Ca-'13), K, of 
O( l)), or because the adsorbed surfactant behaves like an insoluble monolayer, with 
the rate of adsorptive-desorptive exchange tending to zero ( E  of O( l), K, of O ( C U ~ / ~ ) ) .  
In order that the surface velocity (4.10) remain bounded in this limit, the second 
derivative of u , ( ~ )  must go to zero. This condition, along with (3.15) which dictates that 
the surface velocity in the cylindrical region be uniform, requires that remain 
constant and equal to the wall velocity value throughout the transition region. In this 
limit, the film thickness equation becomes: 

(4.11) 

which is simply the maximum surfactant effect model (cf. Herbolzheimer 1987; Chang 
& Ratulowski 1987) for this flow field. 

The coupled differential equations (4.9) and (4.10) with unknowns h(,,, h,, and us(o) 
describe the dynamics of the transition region. Their solution requires proper matching 
conditions with the uniform film and hemispherical cap regions. 

To facilitate their integration, these equations are recast in canonical forms in terms 
of j (0 ,  where j and 6 are: 

(4.12) 

and s is an arbitrary shift of origin. In terms of these variables, (4.9) and (4.10) become : 

(4.13) 

and (4.14) 
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where M is defined by: 

(4.15) 

This group contains the film thickness in the cylindrical region, h,. While h, is 
unknown a priori, it is bounded below by the Bretherton wetting-layer thickness and 
above by the maximum surfactant effect film thickness : 

1.34 < h, < 42/3 1.34. 

in terms of transition region scales. Since h, is always an O( 1) quantity, the magnitude 
of M indicates the magnitude of the Marangoni effects in the flow field. 

4.3. Matching with the cylindrical region 
Equations (3.14k(3.16) require that the transition region velocity, concentration and 
film thickness at large, negative 6 must tend to their cylindrical region values. 
Therefore, in this limit, j and us(o) must tend to the limits: 

lim j = 1, 
(+-a, 

lim us(o) = - 1. 
c+-, 

(4.16) 

(4.17) 

According to the surface mass balance (4.8), deviations in the surface concentration 
from its equilibrium are proportional to the derivative of the surface velocity. 
Therefore (4.17) implicitly forces the surface concentration to approach its equilibrium 
value in this limit. 

Conditions for the departure of the transition region equations from their thin film 
values are found by expanding (4.13) and (4.14) about the limiting values of (4.16) and 
(4.17) and retaining only first-order terms. The linearized equations are : 

(4.18) 

(4.19) 

Substituting 
j =  l+exp(m,Q 

into (4.18) results in a fifth-order algebraic equation for the eigenvalues m,. These 
eigenvalues, which are functions of M ,  have been determined numerically for the range 
of M from lo-' to lo6. For each value of M there are two positive real eigenvalues. The 
remaining three eigenvalues consist of one that is real and negative and a complex 
conjugate pair with negative real parts. Since bothj  and us(o) must remain bounded as 
t becomes large and negative, only the two eigenvalues with positive real parts, m, and 
m2, can contribute to the initial departure o f j  and us(o) from the uniform film region. 
The solutions for j and us(o) at large negative are therefore: 

j(0 = 1 + co exp (m, 0 + c, exp (m, 0, (4.20) 
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These equations are used to initiate the integration of (4.13) and (4.14) at some 
negative value of t;. Because of the arbitrary shift of origin s, one of the constants, say 
co, can arbitrarily be set equal to 1. 

4.4. Matching with the capillary statics region 

The remaining unknowns, c,, c,, I, h, and p are determined by matching the profiles 
for h and T,, at the outer edge of the transition region to the cap region profiles Hand 
r,, at the inner limit of the cap region. The matching conditions are: 

lim (1 - Ca2/’ h(,,)(Q) = lim H(z), 
5+, 2--1 

(4.22) 

l imrTR = lim rHc, (4.23) 

where the subscripts TR and HC denote transition region and hemispherical cap 
variable, respectively. The matching of the film profiles (4.22) is that used by 
Bretherton and formalized by Park & Homsy. Their results for this condition are 
recapitulated briefly below. 

At large t;, the film thickness becomes large, and (4.13) yields a quadratic expression 

5- 00 z+-1 

for j :  

or, in terms of h(o)(Q: 
(4.24) 

(4.25) 

For the profiles in the outer region, (3.7) is expanded in a Taylor series about z = - I  
and expressed in inner variables. Term by term matching at O(1) and O(Cal/’) gives: 

$(O) = - 1, (4.26) 
I =  1, (4.27) 

P(1) = 0. (4.28) 
Equation (4.26) states that the leading-order pressure in the hemispherical cap 

region is determined by the equilibrium surface tension. Consequently, the radius of 
the hemispherical cap is equal to the tube radius to leading order. Equation (4.27) fixes 
the origin of the transition region one radial distance away from the tip of the 
hemisphere. Finally, the Cal/’ contribution to the pressure is zero. Matching O(Ca2/’) 
terms, the leading-order correction to the pressure along with the thickness of the 
wetting layer in the thin film region h,  can be resolved: 

P(2) = - B , B , + X ,  (4.29) 
h, = B,. (4.30) 

Finally, matching transition region and hemispherical cap region surface con- 
centration profiles at each order of Call’, equation (4.23), together with the surface 
mass balance, equation (4.8) requires that : 

(4.3 1) 

4.5. Integration 
The integration of (4.13) and (4.14) is initialized at some finite, negative value of t;, to, 
using (4.20) and (4.21). These initial conditions are functions of the unknowns 
constants cl and c,. Values of c1 and c, must be chosen so that the initial deviation of 
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both us(o) and j from their cylindrical region values is small. In addition, the constants 
must allow the integration of (4.13) and (4.14) to large 6 at which j behaves like a 
quadratic, and matching condition (4.3 1) is obeyed. These boundary conditions allow 
the determination of c1 and c,, and thus a unique solution for j and us(o) at each value 
of M .  

Since the boundary conditions occur at either end of the integration path, shooting 
methods are required. Appropriate guesses for the unknown constants are made at the 
beginning of the integration. Both to and c, are chosen so that 

(j(to)-l) < 0.01. (4.32) 

The equations are integrated using a Bashforth-Adams routine to some final value tf 
of 6, chosen so that 

at the end of the path 

j > 900 (4.33) 

Values of c1 and c, are considered satisfactory if 

(4.34) 

For all of the converged values presented in this paper, the final value for j was 
sufficiently large that 

d3 j 
- = o(10-9). 
dt3 

(4.35) 

An iterative procedure is needed in order to find satisfactory values for c1 and c,. 
Before an initial integration can be performed, it is necessary to find a value for c, that, 
given c,, allows the equations to be integrated. This requires some a priori knowledge 
of the behaviour of the system for unacceptable values of c,. Values of c, that are too 
small (large) cause us0 to become large and negative (positive). The system of equations 
is too sensitive to c, for straightforward predictor-corrector methods to be effective. 
Therefore, an interval halving scheme was used to find appropriate values of c,. 

The search routine involves finding c, for a fixed value of cl. A value for c1 is 
considered acceptable if, by choosing a smaller deviation from the thin film (i.e. a 
smaller guess for cl), the values for h, andp,, found from a converged solution, change 
by less than 1 %. If this is not the case, a new value for c, is adopted, and the 
convergence procedure is begun again. For all of the converged values presented in this 
paper, initial departure of j from its cylindrical region value obey (4.32) and initial 
departures of us0 obey: 

(4.36) 

Once acceptable values for c1 and c, are found, the profile for the film thickness 
should obey (4.24) at large values of j .  For j > 400, the converged film thickness profile 
is fit to a quadratic allowing values for the wetting-layer thickness and leading-order 
pressure corrections to be evaluated. The results of the integration and matching 
procedures are discussed below. 

5. Results and discussion 
5.1. Results 

As discussed in 0 1 and sketched in figure 2, a depletion of surfactant is anticipated in 
the region of the stagnation ring. This depletion is shown in figure 4, where the leading- 
order deviation in the surface concentration from its equilibrium for M equal to 0.5 
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M = 0.5 

5 
FIGURE 4. The transition region surface concentration deviation r, us. f; is shown for M = 0.5 

and K ,  = 1.0. The symbol * marks the location of the stagnation ring in this figure. 

-10 0 10 20 30 40 50 

5 
FIGURE 5. The transition region surface tension deviation u2 us. f; for various M values. The 

symbol * marks the location of the stagnation ring in this figure. 
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FIGURE 6 .  The Marangoni stress is shown us. 5 for various M values. The symbol * marks the 
location of the stagnation ring in this figure. 

and K,  equal to 1 .O is shown as a function of the transition region axial coordinate, 6. 
The asterisk indicates the location of the stagnation ring. The corresponding surface 
tension deviation for the same M value is simply: 

Surface tension deviations as a function of the axial coordinate are shown in figure 5 
for different M values. The minimum in the surface concentration, and therefore the 
maximum in the surface tension precedes the location of the stagnation ring. The 
corresponding Marangoni stress exerted by the interface on the fluid is shown in figure 
6. The Marangoni stress pulls toward the point of maximum surfactant depletion. As 
M increases, rather than simply slowing the surface velocity, the flow field reacts to the 
increased drag by displacing the site of maximum surfactant depletion to regions of 
larger film thickness. Negative surface concentration gradients are therefore favoured 
at larger values of 5. Together, (4.8) and (4.10) show that this favours the displacement 
of the stagnation ring toward the cap region and out of the transition region. Surface 
velocity profiles are shown in figure 7 as a function of film thickness h(o) in the 
transition region. For M < 1, the surface velocity departs only slightly from the clean 
interface profile, for which the stagnation ring occurs for h(o) equal to 3h,,,. As M 
increases between 1 and 10, the stagnation ring migrates out to larger film thicknesses. 
For M > 10, there is no longer a stagnation ring in the transition region. Rather, the 
surface velocity remains negative throughout the region, departing progressively less 
from - 1.0 as M is increased over several orders of magnitude, thus approaching the 
maximum surfactant effect limit. 

The film thickness profiles in the transition region are shown as a function of 5 in 
figure 8. The film profiles have been shifted axially so that their shapes can be clearly 
seen. The asymptote of the film profiles at negative 5, i.e. the wetting-layer thickness 
in the uniform film region, increases with M .  In addition, as expected, each profile 

q2 = - E r 2 .  
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-0.5 O F  

FIGURE 7. The surface velocity us. film thickness h(o)(tJ for various M values is shown. As M 
increases from zero, the stagnation ring is displaced toward the hemispherical cap region. This 
migration of the stagnation ring continues until, for M > 10, the surface velocity remains negative 
throughout the transition region. 

" 
-4 0 4 8 12 16 20 

5 
FIGURE 8. The transition region interfacial profile scaled by the Bretherton uniform film thickness, 

is shown for different values of the Marangoni stress parameter M.  The curves have been 
displaced axially so that their shapes can be clearly seen. 
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grows quadratically at large 5. It is the shape of these parabolic regions that determines 
both the leading-order correction to the pressure p2,  and the uniform wetting layer 
thickness h,. 

Figure 9 shows the dependence of the uniform film thickness h,, on the parameter 
M .  For small M ,  h ,  asymptotes to the Bretherton value from above (i.e. the uniform 
wetting layer is always thicker than the clean interface value). As M increases, h,  
increases monotonically, approaching its upper bound, the ‘maximum surfactant 
effect ’. 

The total pressure drop between the uniform film and hemispherical cap region is: 

Ap = 1 i- C U ~ / ~ P , .  

The first term in this expression is due to the change in curvature between the two 
regions, while the second is linked with viscous and Marangoni effects. The behaviour 
of p z  is shown in figure 10, also as a function of increasing M. For weak Marangoni 
effects (small M ) ,  p z  is only slightly in excess of the Bretherton value, which is the 
additional pressure drop required to overcome viscous shearing in the transition 
region. As M increases, the value of p z  also increases monotonically, so that the 
combination of viscous and Marangoni effects requires higher pressures to aspirate the 
bubble. At large M ,  p 2  also approaches an upper bound, the ‘maximum surfactant 
effect ’. 

5.2. Discussion 
5.2.1. Uniform wetting layer thickness 

In their study of the effects of surfactant adsorption on this flow geometry 
Ratulowski & Chang showed that higher pressure drops and thicker films result from 
hindered bulk mass transfer. The present study establishes that Marangoni stresses that 

h- max ............_.______. 

_ _ - - _ -  

1 . 0 r n l l l  ‘ “ ‘ 1 “ ‘ l  ‘ “““‘I ’ “““‘I “ 1 “ ’ W  I ’ 1 1 1 1 - 1  I 1 1 1 1 1 1 1 (  
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FIGURE 10. The leading-order correction to the pressure p z  is shown as a function of the Marangoni 
stress parameter M .  The lower bound is the Bretherton value; the upper bound is the maximum 
surfactant effect value. 

result from hindered sorptive exchange also cause thicker wetting layers and elevated 
pressure drops. Furthermore, for both cases the wetting layer thicknesses and leading- 
order correction to the pressure are bounded below by the clean interface behaviour, 
and above by the ‘maximum surfactant effect’. 

These trends can be anticipated by examining the tangential stress balance. The 
tangential stress balance in the transition region can be written: 

where the right-hand side of this expression is the Marangoni stress. Moving along the 
bubble from the thin film into the transition region, the surface tension gradient is 
positive. Consequently, the left-hand side of this expression must be larger than it 
would be in the case where the interface is stress-free. There are three trends that favour 
an increase in the left-hand side of (5.1): smaller deviations in the surface velocity 
from its uniform film value, thicker local films and larger rates of change of the 
curvature. This balance indicates that surfactant effects always result in thicker films 
and higher pressures for this flow field, independent of the mass transfer mechanism. 

5.2.2. Efsects of surface viscosities 
Interfaces have been postulated to resist shear and dilatation, both through the 

Marangoni stress discussed above and through surface viscosities that resist dilatation 
and shear. The equations describing the dynamics of an interface with Newtonian 
intrinsic stress behaviour were derived by Scriven (1960). Values for the coefficients of 
surface dilatational viscosity, K’, and surface shear viscosity, e‘, have been measured 
with a variety of interfacial viscometers which subject the interface to pure shear or to 
both shear and dilatation (see e.g. Jiang, Chen & Slattery 1983; Djabbarah & Wasan 
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1982; Wei & Slattery 1976). These parameters depend upon the local concentration 
and structure of adsorbed surfactant in a manner that is not yet well understood. 
However, their dependence on r’ can be expanded in a Taylor series about the 
equilibrium state, e.g. for K ’ :  

The surface viscosities can be incorporated in the stress balance at the interface. In so 
doing, a new dimensionless group appears : 

Assuming that @ is an O(1) quantity, both the normal and tangential stress balances 
in the hemispherical cap region remain unchanged. In the transition region, however, 
the tangential stress condition, (4.5) becomes : 

Rescaling the equations in canonical form, the incorporation of K’ in the governing 
equations simply modifies the definition of M to be: 

Using this definition for M ,  and considering the results given above, the role of 
surface viscosities can be understood. Interfaces with surface viscosities require larger 
pressure drops to aspirate the flow and leave thicker wetting layers along the capillary 
walls. The effects of surface viscosities are directly additive to Marangoni effects that 
result from small departures from surface equilibrium states. Both are bounded below 
by the clean interface and above by the maximum surfactant effect models. 
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